TOSUV

Tlog1038 Product Manual

Version: V1.0 | English

tosunai.com

Copyright Information

Shanghai TOSUN Technology Ltd

No. 9 Building, 1288 Jiasong North Road, Jiading District, Shanghai (Headquarters)

Buildings 14-17, Lane 4849 Cao'an Highway (Shanghai Research Institute)

In the principle of providing better services to users, Shanghai TOSUN Technology Ltd (hereinafter referred to as "TOSUN Technology") will present as much detailed and accurate product information as possible in this manual. However, due to the timeliness of the content in this manual, TOSUN Technology cannot fully guarantee the timeliness and applicability of this document at anytime.

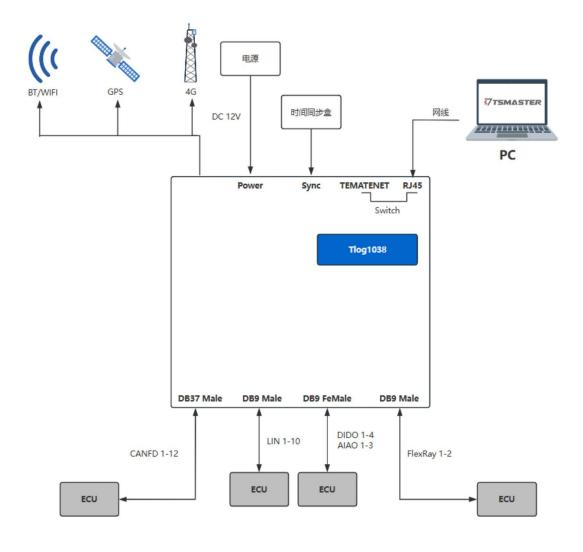
If there are any changes to the information and data in this manual, no separate notice will be given. To obtain the latest version of the information, please visit the <u>official website of TOSUN Technology</u>or contact the staff of TOSUN Technology. Thankyou for your understanding and support!

TOSUN reserves all rights to this document and its contents. Without the written permission of TOSUN Technology, no part of this manual maybe copied in any form or by any means.

@ Copyright 2024-2025, Shanghai TOSUN Technology Ltd. All rights reserved.

What Are the Advantages of the Tlog1038?

- Multi-bus Technology: The Tlog1038 can simultaneously support CAN/CAN FD, LIN, FlexRay, and Ethernet bus technologies. In a complex bus network environment, only one Tlog1038 device is required to communicate with multiple ECU nodes across different bus technologies.
- Multi-channel: The Tlog1038 offers a rich set of bus channels, supporting up to 12 CAN/CAN FD channels, 10 LIN channels, 2 FlexRay channels, and 4 Ethernet channels (switch functionality). This allows it to easily handle the multi-channel demands in various use cases.
- **High Performance:** With high-performance hardware, the Tlog1038 ensures excellent data processing capabilities in complex networks. Connecting via Ethernet ensures a fast and stable data interaction rate with the PC.
- Wireless Access: Integrated with 4G, Bluetooth, Wi-Fi, and other wireless technologies, Tlog1038 allows for easy wireless access to the device through various methods.
- Cost Efficiency: By integrating multiple bus technologies, the Tlog1038 reduces the need for separate communication modules in the bus network, thus lowering hardware costs and simplifying wiring complexity.
- Highly Compatible Software: The Tlog1038 is highly compatible with the TOSUN
 TSMaster software. When used together, it makes it easy to monitor, analyze, and simulate
 various bus data, as well as perform functions such as UDS diagnostics, ECU flashing,
 CCP/XCP calibration, etc.



What Can It Do?

- CAN/CAN FD bus data monitoring, collection, and analysis
- LIN bus data monitoring, collection, and analysis
- FlexRay data monitoring, collection, and analysis
- Ethernet switch functionality
- DIDO (Digital Input/Output),AIAO (Analog Input/Output)
- Bus data recording, storage, and export
- ECU flashing
- ECU-level and system-level automated testing
- ...

How to Use the Tlog1038 Device?

Contents

Tlog1038	Product Manual
	1. About this User Manual
	1.1 Warranty
	1.2 Copyright7
	2. General Information
	2.1 Bus Data Collection and Analysis
	2.2 Bus Simulation 9
	2.3 Diagnostic
	2.4 Calibration
	3. Tlog1038
	3.1 Overview
	3.2 Features
	3.3 Technical Data15
	3.4 Electrical Data
	3.5 Mechanical Data
	3.6 Scope of Delivery
	3.7 Hardware Interface
	3.8 LED
	3.9 Optional Accessories
	4. Quick Start
	4.1 System Connection
	4.2 Driver Installation
	4.3 Software Overview
	4.4 Software Installation
	4.5 Use TSMaster with the Hardware29
	4.6 Logger Usage Instructions
	5. Inspection and Maintenance
	6. Appendix

1. About this User Manual

1.1 Warranty

This document is provided for reference only and does not constitute any form of guarantee or commitment from TOSUN. TOSUN Technology reserves the right to modify the content and data of the document without further notice. TOSUN Technology assumes no responsibility for the accuracy of the document or for any damages arising from the use of the document. TOSUN Technology greatly appreciates for pointing out errors or making suggestions for improvement, so that we can provide more efficient products in the future.

1.2 Copyright

TOSUN Technology retains all rights to this document and its contents. Without the explicit written permission of TOSUN Technology, it is prohibited to copy, distribute, transmit, disseminate, republish, or use any part of this document in any manner.

2. General Information

2.1 Bus Data Collection and Analysis

With the TSMaster software, functions such as message sending/monitoring/replay, bus statistics/logging, digital data/graphic form display and analysis, and so on can be achieved.

Bus Statistics

Bus statistics include: bus load rate, peak load rate, data frame rate, data frame count, error frame rate, error frame count, controller status, and send error count.

Database

Supports loading databases in formats such as DBC, LDF, XML, ARXML, and can display database structure views, signal communication matrix views, and message communication matrix views.

Message Replay

Supports offline and online replay of recorded files in formats such as BLF and ASC.

Message Transmission

Supports manual sending, hotkey sending, and periodic sending. It also supports signal generators and allows for the creation of customized messages and database-based messages.

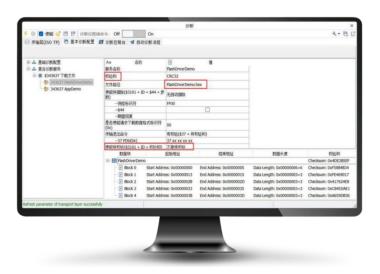
Message Monitoring

Supports multiple display modes, DBC parsing to view signal values, channel filtering, and ID filtering.

Graphical Value Display

The signal's Y-axis is flexible and configurable, supporting multi-axis mode and separated display mode, with the option to precisely display data points, which facilitates data analysis for users.

2.2 Bus Simulation


With the TSMaster software, it is possible to achieve multiple buses simulation such as CAN, LIN, and FlexRay. ECU code simulation can also be achieved through soft HIL. The Panel feature built into TSMaster allows bus signals association in the panel to achieve graphical display.

- Supports CAN bus simulation
- Supports LIN bus simulation

- Supports J1939 bus simulation
- Supports FlexRay bus simulation

2.3 Diagnostic

Diagnostic is an important function of automotive ECUs. When the vehicle is in operation, sensors distributed throughout the vehicle can track various potential faults that may occur at any time in the vehicle's electrical or electronic systems. The TOSUN toolchain assists users in conveniently developing and verifying fault diagnosis-related functions, and performing flashing based on the UDS protocol.

• Diagnostic Parameter Configuration

The configuration includes timeout parameter configuration, TesterPresent configuration, and SeedKey DLL configuration. With a built-in SeedKey algorithm editor, users can implement SeedKey algorithms directly without the need for external development tools.

Basic Diagnostic Configuration

Users can edit the diagnostic database by themselves, including: the settings for various services, the parameters related to requests and responses and so on.

Diagnostic Console

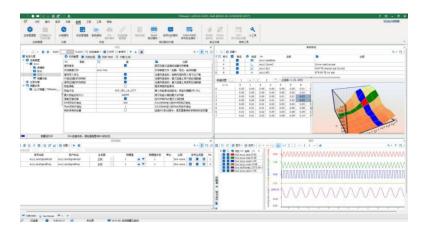
Execute the configured diagnostic services, and user can set up automatic comparison to check ifthe response results are correct.

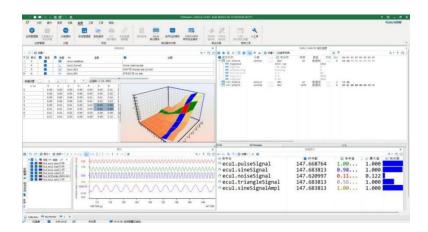
Automated Diagnostic Process

Customize diagnostic processes and diagnostic services to facilitate the creation of various Flash Bootloader flashing processes.

2.4 Calibration

CCP: It is a communication protocol based on CAN (Controller Area Network), mainly used for the calibration and parameter settings of ECUs. It provides the ability to read and write ECU, allowing engineers to read the current parameter values, set new parameter values, and perform real-time testing and adjustments.


XCP: It is a universal measurement and calibration protocol applicable to various


communication interfaces such as CAN and Ethernet. It offers higher transmission rates and more robust capabilities, allowing engineers to quickly read and write large volumes of data in a short period and perform advanced diagnostics and debugging operations.

Automotive calibration is a technique used in the development and diagnostics of automotive ECUs, which involves adjusting the parameters and calibration values of the ECU to optimize the vehicle's performance and functionality. CCP and XCP are common communication protocols used for communication with the ECU, and reading and modifying parameters. These technologies and tools enable vehicle manufacturers and engineers to better perform vehicle tuning and calibration work.

- Supports importing A2L files
- Supports DAQ/Polling measurement
- Memory settings, capable of loading images and configuring verification methods, etc.
- Supports characteristic parameter curves, MAP diagrams, etc.
- Supports MDF/MF4 file storage and playback
- Supports graphical display of variable curves
- Supports calibration parameter management in par or hex format
- Built-in message information analysis, diagnostics, calibration, and system variable data are integrated into one, which facilitates a streamlined process of data analysis
- Automated calibration functions can also be achieved by calling system variables
- Supports single and multiple file downloads

3. Tlog1038

3.1 Overview

The Tlog1038 is a multi-bus simulation testing and logger tool launched by TOSUN, which supports CAN/CAN FD, LIN, and FlexRay buses. It features 12 channels for CAN/CAN FD, with adjustable baud rates from 125 Kbps to 1 Mbps for CAN protocol and up to 8 Mbps for CAN FD protocol. There are 10 LIN channels, with baud rates supporting from 0 to 20 Kbps, and the master/slave mode can be software-configured. Additionally, the device supports 2 FlexRay channels with dual-line redundancy for data transmission, offering low latency and flexible bandwidth allocation mechanisms. It supports various data types and rich topological structures. It also includes multiple digital and analog I/O interfaces for convenient signal measurement and system integration.

The Tlog1038 connects to a PC via Ethernet, ensuring high data transfer rates. This prevents communication bottlenecks with the PC when processing large amounts of bus data. It also supports wireless access through 4G, Bluetooth, Wi-Fi, and other methods.

With the powerful TSMaster software, it supports loading DBC, LDF, XML, ARXML, etc. database files, making it very convenient to monitor, analyze, and simulate various types of bus data, and it also supports functions such as UDS diagnostics, ECU flashing, CCP/XCP calibration, etc.

3.2 Features

- ✓ us (microsecond) level hardware message timestamps to meet advanced requirements
- ✓ Driverless design for Windows system
- ✓ 12 CAN/CAN FD channels, 10 LIN channels, 2 FlexRay channels, and 4 Ethernet channels (switch functionality)
- ✓ Supports DIDO *4 and AIAO *3
- ✓ CAN channel baud rate adjustable from 125Kbps-1Mbps, and CAN FD supports a maximum

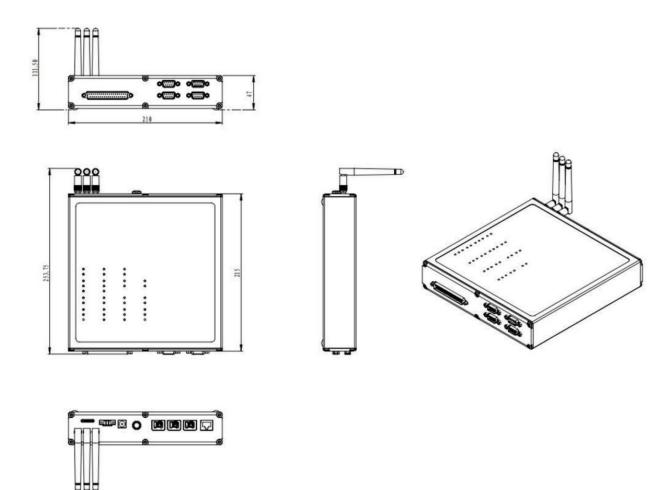
- of 8Mbps
- ✓ LIN bus master/slave mode configurable via software
- ✓ Built-in 120-ohm terminal resistor for CAN, with the resistance value configurable through software
- ✓ CAN supports Self-ACK self-acknowledgment configuration
- ✓ Built-in 100-ohm terminal resistor for FlexRay, with the resistance value configurable through software
- ✓ Auxiliary communication controller, eliminating the need to add extra nodes during cold starts
- ✓ Supports blf and asc format data recording and offline/online playback
- ✓ Supports hardware time synchronization across multiple device
- ✓ Supports GPS function
- ✓ Built-in 256G eMMC storage
- ✓ Provides API-based sample projects for easy secondary development

3.3 Technical Data

	12* CANED	
	12* CAN FD	
	10* LIN	
Channel	2* FlexRay	
Chamier	4* DIDO	
	3* AIAO	
	4* ETH (RJ45 + 3* TEMATENET for switch functionality)	
PC Interface	RJ45 Ethernet	
CAN Interface	DB37 Male	
LIN Interface	DB9 Male	
FlexRay Interface	DB9 Male	
I/O Interface	DB9 Female	
Driver	Driverless design for Windows system	
Cache	Hardware cache to ensure no frame loss	
CAN	Supports CAN 2.0 A and B protocols, compliant with the ISO 11898-1	
CAN	standard, with baud rates from 125Kbps to 1Mbps	
CANED	Supports CAN FD that complies with both ISO and non-ISO standards,	
CAN FD	with baud rates from 125Kbps to 8Mbps	
LIN Supports LIN 1.3 and LIN 2.x, with baud rates from 0 to 20Kbps		

FlexRay	FlexRay channel (Aand B)			
Cold Start	Supported			
Timestamp Accuracy	1 us, hardware message timestamp, can meet advanced requirements			
CAN Terminal Resistor	Built-in 120-ohm terminal resistor, with the resistance value configurable through software			
FlexRay Terminal Resistor	Built-in 100-ohm terminal resistor, with the resistance value configurable through software			
Galvanic Isolation	CAN/FlexRay channel DC2500V isolation			
DIDO	DI: 0-40V Vref: 0-3.3V, Threshold range: VAH=(330+499*Vref)/1098; Val=0.455*Vref DO: Low level 0V, high level 5V/12V (use with load unsupported)			
AIAO	AI: 0-39VAO: 0-30V			
Power Supply	DC power supply			
Power Consumption	10W			
Case Material	Metal			
Dimension	215*210*47mm			
Weight	1500g			
Operating Temperature	-40°C~80°C			
Operating Humidity	$10\% \sim 90\%$ (non-condensing)			
Operating Environment	Keep away from corrosive gases			

3.4 Electrical Data


Parameter		Test Condition	Minimum Value	Typical Value	Maximum Value	Unit
Operating Voltage	DC power supply	12-channel CAN transmission, 10-channel LIN transmission	9	12	28	V
Operating Current	DC power supply	12-channel CAN transmission, 10-channel LIN transmission		0.525		A
Power Consumption	DC power supply	12-channel CAN transmission,		6.3		W

		10-channel LIN transmission				
	Bus pin voltage resistance	CANH CAHL	-58		58	V
CAN Interface	Terminal resistor	Terminal resistor enabled		120		Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500		-1	VDC
LIN Interface	Bus pin voltage resistance	LIN1, LIN2	-40		40	V
	Bus pin voltage resistance	FlexRay_BM、 FlexRay_BP	-60		60	V
FlexRay Interface	Terminal resistor	Terminal resistor enabled		100		Ω
	Isolation withstand voltage	Leakage current less than 1mA	2500			VDC
EMC Compatibilit y	EFT	IEC61000-4-4 standard	2			kV

3.5 Mechanical Data

3.6 Scope of Delivery

✓ Main device: Tlog1038

✓ 12V2Apower adapter

✓ Cat 6 Gigabit Ethernet cable

✓ DB37 female to 12-way DB9 signal cable

✓ DB9 female to two male signal cable (FlexRay)

✓ DB9 to eight banana LIN cable *2

✓ DB9 mail

✓ GPS antenna

✓ SMA antenna

3.7 Hardware Interface

- > 1000Base-T interface (RJ45)
- > TEMATENET Ethernet interface
- > Time synchronization interface
- Power interface (round adapter port)
- Power interface (phoenix terminal)
- > SMA antenna interface (4G)
- > GPS antenna interface
- > SMA antenna interface (WIFI)
- ➤ DB37 Male (CAN/CAN FD)

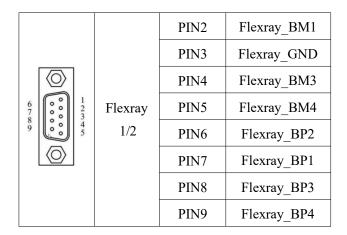
PIN	Definition	PIN Number	Definition
Number			

PIN20	CAN	PIN1	CAN
	FD1_HIGH		FD1_LOW
PIN21	CAN	PIN2	CAN FD_GND
	FD_SHIELD		
PIN22	CAN	PIN3	CAN
	FD2_HIGH		FD2_LOW
PIN23	CAN	PIN4	CAN
	FD3_HIGH		FD3_LOW
PIN24	CAN	PIN5	CAN FD_GND
	FD_SHIELD		
PIN25	CAN	PIN6	CAN
	FD4_HIGH		FD4_LOW
PIN26	CAN	PIN7	CAN
	FD5_HIGH		FD5_LOW
PIN27	CAN	PIN8	CAN FD_GND
	FD_SHIELD		
PIN28	CAN	PIN9	CAN
	FD6_HIGH		FD6_LOW
PIN29	CAN	PIN10	CAN
	FD7_HIGH		FD7_LOW
PIN30	CAN	PIN11	CAN FD_GND
	FD_SHIELD		
PIN31	CAN	PIN12	CAN
	FD8_HIGH		FD8_LOW
PIN32	CAN	PIN13	CAN
	FD9_HIGH		FD9_LOW
PIN33	CAN	PIN14	CAN FD_GND
	FD_SHIELD		
PIN34	CAN	PIN15	CAN
	FD10_HIGH		FD10_LOW
PIN35	CAN	PIN16	CAN
	FD11_HIGH		FD11_LOW
PIN36			
PINSO	CAN	PIN17	CAN FD_GND

PIN37	CAN	PIN18	CAN
	FD12_HIGH		FD12_LOW
		PIN19	CAN FD_GND

➤ DB9 Male interface (LIN):

DB9 Pin	Channel	PIN	Definition	Channel	PIN	Definition
		Number			Number	
		PIN1	LIN1		PIN1	LIN6
		PIN2	V_Bat		PIN2	V_Bat
	1 LIN 1-5	PIN3	LIN2	LIN 6-10	PIN3	LIN7
		PIN4	GND		PIN4	GND
$\begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \\ 0 & \circ \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$		PIN5	LIN3		PIN5	LIN8
9 0 0 4 5		PIN6	LIN4		PIN6	LIN9
		PIN7	LIN5		PIN7	LIN10
		PIN8	GND		PIN8	GND


DB9 Female (I/O):

DB9 Pin	Channel	PIN	Definition
		Number	
		PIN1	DIDO1
		PIN2	DIDO3
	I/O	PIN3	DGND
9 40		PIN4	AIAO1
8 3 2		PIN5	AIAO3
6 10		PIN6	DIDO2
		PIN7	DIDO4
		PIN8	AGND
		PIN9	AIAO2

➤ DB9 Male interface (FlexRay) :

DB9 Pin	Channel	PIN	Definition
		Number	
		PIN1	Flexray_BM2

3.8 LED

Diagram of LED indicator:

Description of indicator:

Indicator	Definition
ETH 1-3	Indicator for Ethernet channel
Master	Indicator for master/slave
	mode

LIN 1-10	Indicator for LIN channel
FlexRay 1-2	Indicator for FlexRay channel
CAN FD 1-12	Indicator for CAN FD channel
Log	Indicator for bus logging
Link	Indicator for connection
4G	Indicator for 4G
BT/WIFI	Indicator for Bluetooth/WIFI
GPS	Indicator for GPS
Power	Indicator for power

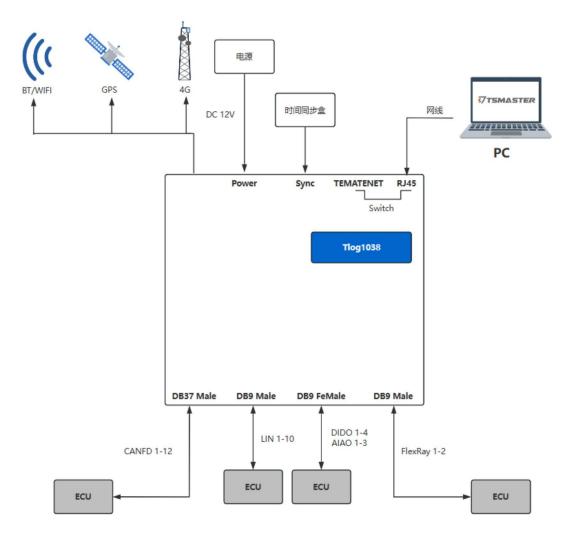
Description of LED color/status:

Color/Status	Description		
ETH Yellow Blinking	ETH operates in 100Mbps mode		
ETH Green Blinking	ETH operates in 1Gbps mode		
Master Green Stays On	ETH is the master node		
LIN Green Blinking	LIN channel data frame is sent or received correctly		
LIN Red Blinking	LIN channel sends or receives error frames, indicating a configuration, protocol, or wiring error		
FlexRay Green Blinking	FlexRay channel data frame is sent or received correctly		
FlexRay Red Blinking	FlexRay channel sends or receives error frames, indicating a configuration, protocol, or wiring error		
CAN FD Green Blinking	CAN FD channel data frame is sent or received correctly		
CAN FD Red Blinking	CAN FD channel sends or receives error frames, indicating a configuration, protocol, or wiring error		
Log Green Stays On	Device entered logger mode		
Log Green Blinking	Device is logging data		
Log Green Stays On	Storage space full		
Link Green Stays On	ETH device access is normal		
4G Green Blinking	4G module started normally		
(Slow)			
4G Green Blinking (Fast)	4G module transmitting data		
BT/WIFI Green Blinking	BT/WIFI module started normally		

GPS Green	GPS signal is normal
Power Device is powered on normally	

3.9 Optional Accessories

1. Mounting bracket


2. TEMATENET ethernet cable

4. Quick Start

4.1 System Connection

Power the Tlog1038 via the power adapter interface or Phoenix terminal interface with DC 12V, and connect the device's RJ45 Ethernet port to the PC. Based on users' requirements, connect the corresponding CAN/CAN FD, LIN, FlexRay, DIDO, and AIAO interfaces to the ECU. The Tlog1038 can then be controlled via the TSMaster software on the PC to communicate with the ECU.

4.2 Driver Installation

Driverless design for Windows, offering excellent system compatibility.

4.3 Software Overview

TSMaster is a powerful and comprehensive tool that can connect, configure, and control all TOSUN hardware tools and devices, enabling functions such as automotive bus embedded code generation, monitoring, simulation, development, UDS diagnostics, CCP/XCP calibration, ECU flashing, I/O control, test measurement, and so on.

TSMaster supports Matlab Simulink co-simulation and CarSim dynamic model ECU algorithm simulation testing (soft real-time HIL). It provides users with a series of convenient functions and editors, allowing them to directly execute ECU code within TSMaster and supports C script and Python script editing. At the same time, TSMaster also offers a mini-program function, enabling users to customize the simulation test panel, test process, test logic, and even the entire test system, and automatically generate reports. The code written by users based on TSMaster is hardware-independent, and can be easily shared, referenced, and used on different hardware platforms.

TSMaster supports multiple commonly used bus tool brands, including Vector, Kvaser, PEAK, IXXAT, as well as mainstream instruments in the market (such as oscilloscopes, waveform generators, and digital multimeters) and boards (such as AI, DI, DO, etc.). Its design concept is to perfectly integrate with the test system to achieve joint simulation and testing of multiple hardware and multiple channels. This enables TSMaster to meet the PV/DV test verification needs for various automotive electronic components and assemblies, as well as the inspection requirements for the production line.

4.4 Software Installation

TSMaster software download link:

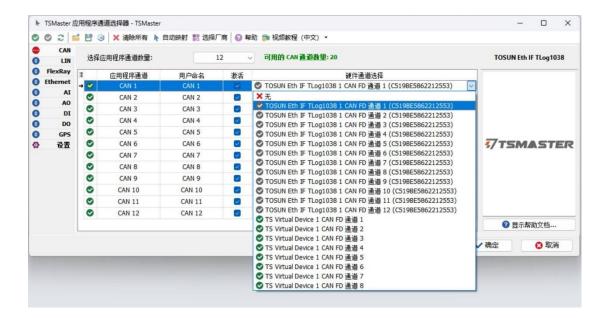
https://www.tosunai.com/downloads/

If the link is not accessible, you can contact the corresponding sales personnel or visit the official TOSUN website to obtain the software. Meanwhile, you can scan the QR code to follow the TOSUN official account to get the download link.

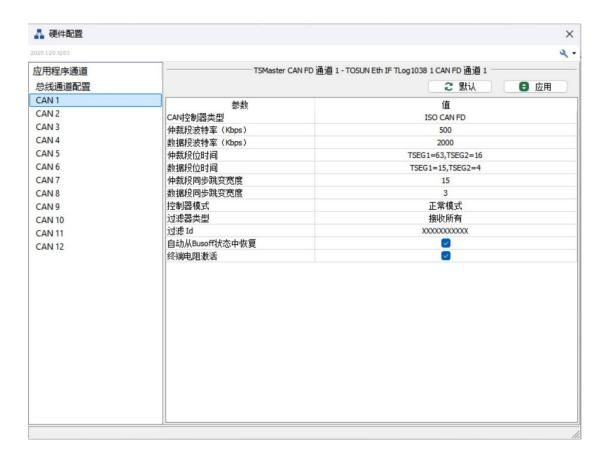
After the installation, you can see the following software on the PC.

4.5 Use TSMaster with the Hardware

Set the PC's Ethernet IP address to 192.168.1.x (to ensure it is on the same subnet as the Tlog1038).


In TSMaster, click Hardware->Channel Selection, in the channel selection GUI, click

Settings on the left sidebar, and check "Enable Ethernet Interface Device", then the Tlog1038 device will be shown.



In the "Channel Selection" interface, select the type of bus technology in the left sidebar and configure the application channel count.

In Network Hardware, a series of controller parameters can be configured, such as protocol, baud rate, controller mode, and whether to enable the terminal resistor.

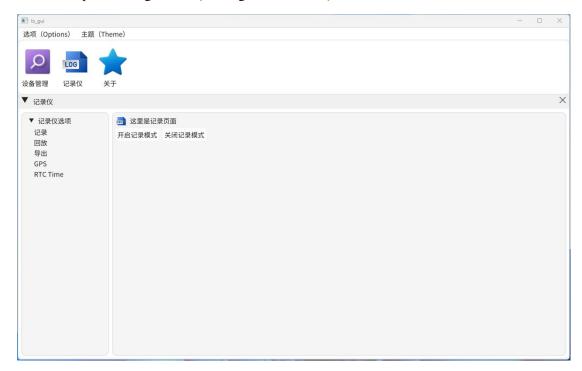
After the configuration, click Analysis->Start and connect the hardware to efficiently carry out works such as bus development, testing, ECU production line, etc. with the powerful TSMaster software. For more detailed instructions on using the TSMaster software, please refer to the TSMaster software manual and the quick start guide.

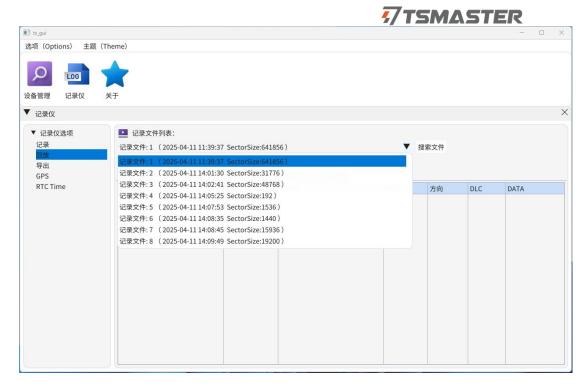
4.6 Logger Usage Instructions

When Tlog1038 device is powered on, it defaults to logger mode. In this mode, connect the CAN, LIN, and FlexRay channels to the ECU to perform message logging (for the first power-on, use TSMaster to configure controller parameters, such as communication baud rate).

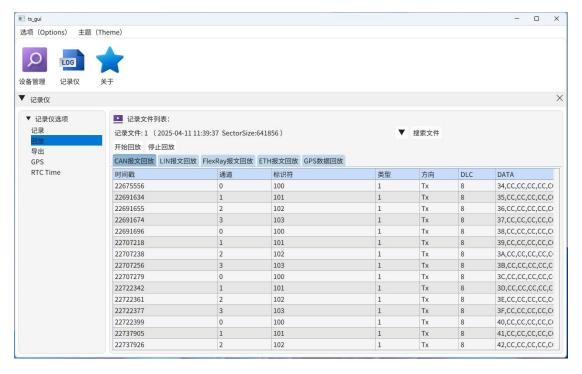
The logger module comes with dedicated software that supports the following functions: enabling/disabling the logger, offline playback, BLF file export, GPS configuration, and RTC time calibration. The usage instructions are as follows:

(1) Connecting to the device


Power on the Tlog1038 and connect it to the PC via cables. Set the PC's Ethernet IP address to 192.168.1.x (ensuring it is on the same network segment as the Tlog1038). Open the "Device Management" window, select ETH type, and enter the Tlog1038's IP address (default: 192.168.1.11:21840). Click "Search Device", and after the Tlog1038 is detected, click "Connect Device". Wait for the prompt confirming a successful connection.

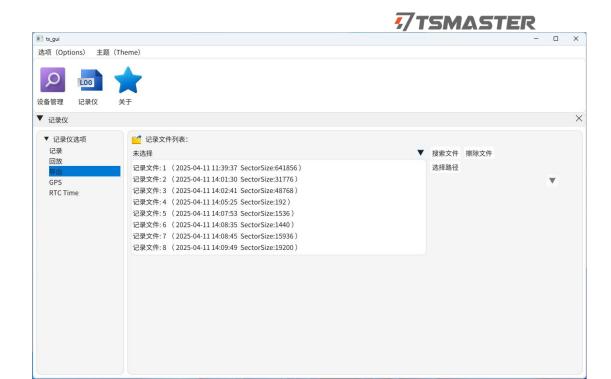

(2) Enabling/disabling the logger

Open the "Logger" window, select "Record" in the logger options, and click "Start Recording Mode" to enable logger mode (the Log LED on the device turns on). To disable logger mode, click "Stop Recording Mode" (the Log LED turns off).

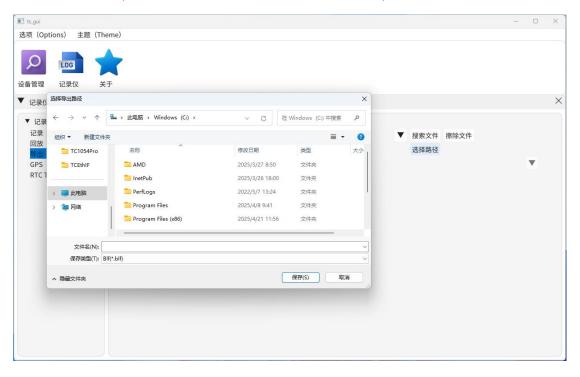


(3) Offline playback

Open the "Logger" window, select "Playback" in the logger options. This function allows offline playback of bus messages stored in the Tlog1038's memory. Click "Search File" and select the desired playback file from the dropdown list.



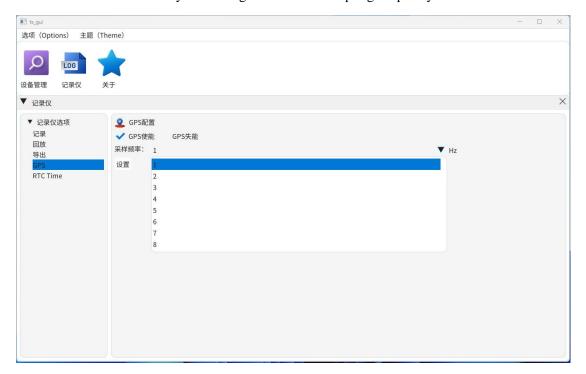
Click "Start Playback" to replay all CAN, LIN, FlexRay, Ethernet, and GPS data from the file in the window.



(4) BLF file export

Open the "Logger" window, select "Export" in the logger options. This function exports recorded files from the Tlog1038's memory in BLF format. Click "Search File" and select the file to export from the dropdown list.

Click "Select Path", choose the destination folder for the BLF file, and name the file.



Click "Start Export" and wait until the progress bar reaches 100% to complete the export.

(5) GPS configuration

Open the "Logger" window, select "GPS" in the logger options. This function enables/disables GPS functionality and configures the GPS sampling frequency.

(6) RTC time calibration

Open the "Logger" window, select "RTC Time" in the logger options. This function retrieves/calibrates the RTC time in the Tlog1038 device. Click "Get Device Time" to retrieve the current time from the Tlog1038; Click "Get System Time" to fetch the current PC time; Click "Set Time" to synchronize the Tlog1038's RTC time with the system time.

5. Inspection and Maintenance

The main electrical components of the Tlog1038 device are semiconductor components. Although the equipment has a long service life, they may also accelerate aging and significantly reduce their service life under an incorrect environment. Therefore, during the use of the equipment, periodic inspection should be carried out to ensure that the use environment maintains the required conditions.

It is recommended to conduct inspections at least once every 6 months to 1 year. Under improper environmental, more frequent inspections should be conducted. As shown in the table

below, if you encounter problems during maintenance, please read the following content to find the possible causes of the problem. If the problem still cannot be solved, please contact Shanghai TOSUN Technology Ltd.

Item	Inspection	Standard	Action
Power Supply	Inspect for voltage fluctuations at the power supply end	Power supply port +12V DC	Use a voltage meter to check the power input end. Take necessary actions to keep the voltage fluctuations within the acceptable range.
Surrounding Environment	Check the ambient temperature of the surrounding environment. (Including the internal temperature of enclosed environments)	-40°C~+80°C	Use a thermometer to check the temperature and ensure that the ambient temperature within in the acceptable range.
	Check the ambient humidity. (Including the internal humidity of enclosed environments)	The relative humidity must be within the range of 10% to 90%	Use a hygrometer to check the humidity and ensure that the ambient humidity within the acceptable range.
	Check for the accumulation of dust, powder, salt, and metal shavings	No accumulation	Clean and protect the equipment.
	Check for any contact with water, oil, or chemical sprays on the equipment	No contact	Clean and protect the equipment if necessary.
	Check for the presence of corrosive or flammable gases in the equipment area	No presence	Inspect by the smell, or using a sensor.
	Check for levels of vibration and shock	Vibration and shock are within the acceptable range	Install padding or other shock-absorbing devices if necessary.
	Check for noise sources	No significant	Isolate the equipment from

	near the equipment	noise source	noise sources or protect the
			equipment.
Wiring Installation	Check the crimped	Ensure enough	Visually inspect and adjust if necessary.
	connectors in the external	space between the	
	wiring	connectors	
	Check for damage in the external wiring	No damage	Visually inspect and replace the wiring if necessary.

6. Appendix

(1) Thanks to the advantages of the Ethernet interface, the Tlog1038 supports remote access. For details, please refer to the technical document:

Remote Access User Guide V1.0

(2) The Tlog1038 provides cross-platform secondary development interface support for customers. For more information, please visit the Gitee repository:

https://gitee.com/xujinpeng120/libTSDevBase

Engineer Everything!

Software

Support CAN(FD)/LIN/FlexRay/SOME/IP and DoIP UDS diagnostics/ECU flashing/CCP/XCP calibration Embedded code generation/Application builder Encrypted release/Logging and bus replay Graphical programming/Residual bus simulation C and Python scripting

Bus monitoring/Transmiting/Automated testing

• EOL Testing Equipment

Durability Testing Solutions

Motor Performance

• FCT

Hardware

1/2/4/8/12-channel CAN FD/CAN to USB/PCIe device

1/2/6-channel LIN to USB/PCIe device

Multi channel FlexRay/CAN FD to USB/PCIe device

Multi channel automotive Ethernet/CAN FD to USB/PCIe device

Automotive Ethernet media conversion device (T1 to Tx)

Multi-channel CAN FD/Ethernet/LIN datalogger

TTS test systems

- -CAN FD/CAN/FlexRay/LIN communication boards
- -Relay and fault injection boards
- -Resistors for sensor simulation
- -Digital I/O, Analog I/O boards available

Solutions

- Bus Conformance
- Network Automation Testing System
- Charging Testing System
- EMB Calibration Testing Equipment
- Information Security Solutions
- Steer-by-Wire Chassis Testing Solutions

About TOSUN

The core product, TSMaster, is a comprehensive tool for automotive R&D, testing, production, and after-sales. It integrates essential functions with hardware support to streamline processes and ensure precision, making it ideal for automotive professionals.

Contact Us:

+86 21-5956 0506 sales@tosunai.com

website:

www.tosunai.com

